3,713 research outputs found

    Xylem surfactants introduce a new element to the cohesion-tension theory

    Get PDF
    Vascular plants transport water under negative pressure without constantly creating gas bubbles that would disable their hydraulic systems. Attempts to replicate this feat in artificial systems almost invariably result in bubble formation, except under highly controlled conditions with pure water and only hydrophilic surfaces present. In theory, conditions in the xylem should favor bubble nucleation even more: there are millions of conduits with at least some hydrophobic surfaces, and xylem sap is saturated or sometimes supersaturated with atmospheric gas and may contain surface-active molecules that can lower surface tension. So how do plants transport water under negative pressure? Here, we show that angiosperm xylem contains abundant hydrophobic surfaces as well as insoluble lipid surfactants, including phospholipids, and proteins, a composition similar to pulmonary surfactants. Lipid surfactants were found in xylem sap and as nanoparticles under transmission electron microscopy in pores of intervessel pit membranes and deposited on vessel wall surfaces. Nanoparticles observed in xylem sap via nanoparticle-tracking analysis included surfactant-coated nanobubbles when examined by freeze-fracture electron microscopy. Based on their fracture behavior, this technique is able to distinguish between dense-core particles, liquid-filled, bilayer-coated vesicles/liposomes, and gas-filled bubbles. Xylem surfactants showed strong surface activity that reduces surface tension to low values when concentrated as they are in pit membrane pores. We hypothesize that xylem surfactants support water transport under negative pressure as explained by the cohesion-tension theory by coating hydrophobic surfaces and nanobubbles, thereby keeping the latter below the critical size at which bubbles would expand to form embolisms

    Doping and temperature dependence of electron spectrum and quasiparticle dispersion in doped bilayer cuprates

    Get PDF
    Within the t-t'-J model, the electron spectrum and quasiparticle dispersion in doped bilayer cuprates in the normal state are discussed by considering the bilayer interaction. It is shown that the bilayer interaction splits the electron spectrum of doped bilayer cuprates into the bonding and antibonding components around the (Ļ€,0)(\pi,0) point. The differentiation between the bonding and antibonding components is essential, which leads to two main flat bands around the (Ļ€,0)(\pi,0) point below the Fermi energy. In analogy to the doped single layer cuprates, the lowest energy states in doped bilayer cuprates are located at the (Ļ€/2,Ļ€/2)(\pi/2,\pi/2) point. Our results also show that the striking behavior of the electronic structure in doped bilayer cuprates is intriguingly related to the bilayer interaction together with strong coupling between the electron quasiparticles and collective magnetic excitations.Comment: 9 pages, 4 figures, updated references, added figures and discussions, accepted for publication in Phys. Rev.

    Brain extraction using the watershed transform from markers

    Get PDF
    Isolation of the brain from other tissue types in magnetic resonance (MR) images is an important step in many types of neuro-imaging research using both humans and animal subjects. The importance of brain extraction is well appreciatedā€”numerous approaches have been published and the benefits of good extraction methods to subsequent processing are well known. We describe a toolā€”the marker based watershed scalper (MBWSS)ā€”for isolating the brain in T1-weighted MR images built using filtering and segmentation components from the Insight Toolkit (ITK) framework. The key elements of MBWSSā€”the watershed transform from markers and aggressive filtering with large kernelsā€”are techniques that have rarely been used in neuroimaging segmentation applications. MBWSS is able to reliably isolate the brain without expensive preprocessing steps, such as registration to an atlas, and is therefore useful as the first stage of processing pipelines. It is an informative example of the level of accuracy achievable without using priors in the form of atlases, shape models or libraries of examples. We validate the MBWSS using a publicly available dataset, a paediatric cohort, an adolescent cohort, intra-surgical scans and demonstrate flexibility of the approach by modifying the method to extract macaque brains

    The CoQ oxidoreductase FSP1 acts parallel to GPX4 to inhibit ferroptosis.

    Get PDF
    Ferroptosis is a form of regulated cell death that is caused by the iron-dependent peroxidation of lipids1,2. The glutathione-dependent lipid hydroperoxidase glutathione peroxidaseĀ 4 (GPX4) prevents ferroptosis by converting lipid hydroperoxides into non-toxic lipid alcohols3,4. Ferroptosis has previously been implicated in the cell death that underlies several degenerative conditions2, and induction of ferroptosis by the inhibition of GPX4 has emerged as a therapeutic strategy to trigger cancer cell death5. However, sensitivity to GPX4 inhibitors varies greatly across cancer cell lines6, which suggests that additional factors govern resistance to ferroptosis. Here, using a synthetic lethal CRISPR-Cas9 screen, we identify ferroptosis suppressor proteinĀ 1 (FSP1) (previously known as apoptosis-inducing factor mitochondrialĀ 2 (AIFM2)) as a potent ferroptosis-resistance factor. Our data indicate that myristoylation recruits FSP1 to the plasma membrane where it functions as an oxidoreductase that reduces coenzyme Q10 (CoQ) (also known as ubiquinone-10), which acts asĀ a lipophilic radical-trapping antioxidant that halts the propagation of lipid peroxides. We further find that FSP1 expression positively correlates with ferroptosis resistance across hundreds of cancer cell lines, and that FSP1 mediates resistance to ferroptosis in lung cancer cells in culture and in mouse tumour xenografts. Thus, our data identify FSP1 as a key component of a non-mitochondrial CoQ antioxidant system that acts in parallel to the canonical glutathione-based GPX4 pathway. These findings define a ferroptosis suppression pathway and indicate that pharmacological inhibition of FSP1 may provide an effective strategy to sensitize cancer cells to ferroptosis-inducing chemotherapeutic agents

    Dendritic Hold and Read: A Gated Mechanism for Short Term Information Storage and Retrieval

    Get PDF
    Two contrasting theories have been proposed to explain the mechanistic basis of short term memory. One theory posits that short term memory is represented by persistent neural activity supported by reverberating feedback networks. An alternate, more recent theory posits that short term memory can be supported by feedforward networks. While feedback driven memory can be implemented by well described mechanisms of synaptic plasticity, little is known of possible molecular and cellular mechanisms that can implement feedforward driven memory. Here we report such a mechanism in which the memory trace exists in the form of glutamate-bound but Mg2+-blocked NMDA receptors on the thin terminal dendrites of CA1 pyramidal neurons. Because glutamate dissociates from subsets of NMDA receptors very slowly, excitatory synaptic transmission can leave a silent residual trace that outlasts the electrical activity by hundreds of milliseconds. Read-out of the memory trace is possible if a critical level of these bound-but-blocked receptors accumulates on a dendritic branch that will allow these quasi-stable receptors to sustain a regenerative depolarization when triggered by an independent gating signal. This process is referred to here as dendritic hold and read (DHR). Because the read-out of the input is not dependent on repetition of the input and information flows in a single-pass manner, DHR can potentially support a feedforward memory architecture

    Coupled Electrical and Magnetic Properties in (La,Sr)FeO\u3csub\u3e3-Ī“\u3c/sub\u3e

    Get PDF
    This article is aimed at studying the temperature dependence oxygen nonstoichiometry, magnetic moments, Fe3+ fraction, NĆ©el temperature and conductivity of (La,Sr)FeO3-Ī“. It is found that the magnetic properties in La0.60 Sr0.40 Fe3-Ī“ is determined by Fe3+ and its concentration, and the conductance is resulted from Fe4+ ions, which act as electron holes. Both of magnetic and electrical properties were directly governed by oxygen nonstoichiometry (Ī“). when Ī“=0.2, the compound has maximum Fe3+, the saturation magnetic moments and NĆ©el temperature are 3.8 ĀµB and 410 Ā°C, both at the highest level, whereas the total carrier concentration is at the minimum

    Probing the Space of Toric Quiver Theories

    Get PDF
    We demonstrate a practical and efficient method for generating toric Calabi-Yau quiver theories, applicable to both D3 and M2 brane world-volume physics. A new analytic method is presented at low order parametres and an algorithm for the general case is developed which has polynomial complexity in the number of edges in the quiver. Using this algorithm, carefully implemented, we classify the quiver diagram and assign possible superpotentials for various small values of the number of edges and nodes. We examine some preliminary statistics on this space of toric quiver theories

    Crossā€species systems analysis of evolutionary toolkits of neurogenomic response to social challenge

    Full text link
    Peer Reviewedhttps://deepblue.lib.umich.edu/bitstream/2027.42/147855/1/gbb12502.pdfhttps://deepblue.lib.umich.edu/bitstream/2027.42/147855/2/gbb12502-sup-0002-TableS1.pdfhttps://deepblue.lib.umich.edu/bitstream/2027.42/147855/3/gbb12502_am.pd
    • ā€¦
    corecore